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Four sets of 3F2(l) functions, Hahn polynomials and recurrence 
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Institute of Mathematical Sciences, Madras-600 113, India 

Received 29 March 1989 

Abstract. The Wigner, Racah and Majumdar sets of J2(1) are derived from the symmetric 
van der Waerden set of 3F2(1) for the 3-j  coefficient, using a transformation due to Erdelyi 
and Weber, which is also used to relate the 3-j  coefficient to a discrete orthogonal Hahn 
polynomial. The four recurrence relations (one old and three new) obtained by Karlin 
and McGregor for the Hahn polynomial are used to derive recurrence relations for the 3-j 
coefficient, two of which have been shown to be useful in the exact recursive evaluation 
of the 3-j  coefficients by Schulten and Gordon. 

1. Introduction 

In the literature (see Smorodinskii and Shelepin 1972), the 3 - j  coefficient has been 
related to a 3F2(1) by Wigner (1940), Racah (1942), van der Waerden (1932) and 
Majumdar (1955). Starting from the van der Waerden form and resorting to the work 
of Whipple (1925) on the symmetries of the 3F2( 1) functions, Raynal (1978) has shown 
that ten different forms of 3F2(l) can be obtained. One of us has shown (Srinivasa 
Rao 1978a) that a set of six &(1) of the van der Waerden type is necessary and 
sufficient to account for the 72 symmetries of the 3 - j  coefficient. Here we show that, 
starting with the highly symmetric van der Waerden set of six 3F2( l ) ,  three equivalent 
sets of 3F2( 1) corresponding to the Wigner, Racah and Majumdar forms can be derived 
by simply using a Weber-Erdelyi (1952) transformation in three different ways. We 
discuss the symmetries of the 3 - j  coefficient in terms of these sets of 3F2(1). 

Recently, there has been considerable interest in unravelling the deep connection 
between the basic quantities of the quantum theory of angular momentum, viz the 
Clebsch-Gordan (or 3 - j )  coefficients and the Racah (or 6 - j )  coefficients and orthogonal 
polynomials of a discrete variable (i.e. polynomials which are orthogonal on a discrete 
set of points). Smorodinskii and Suslov (1982), while determining the eigenvalues and 
eigenvectors of a Hermitian operator, were led to a relation between 3 - j  coefficients 
and discrete orthogonal Hahn polynomials ‘which are practically unknown to physic- 
ists’. Wilson (1980) and Askey and Wilson (1979) related the 6-j coefficient to the 
orthogonal polynomial called the Racah polynomial, which contains as limiting cases 
the classical polynomials of Jacobi, Laguerre and Hermite and their discrete analogues 
which go under the names of Hahn, Meixner, Krawtchouk and Charlier polynomials. 
Askey and Wilson (1979) discuss the classical type of orthogonal polynomials that can 
be given as hypergeometric polynomials and they also provide a chart showing their 
interrelationship. 
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Schulten and Gordon (1975) realised the need for the evaluation of whole strings 
of 3-j coefficients (rather than the evaluation of a single coefficient) of two different 
types and provided a numerical algorithm based on the recursion equations relating 
coefficients in the strings. They derived the recursion relations algebraically from 
certain sum rules satisfied by the 3-j coefficients and they state that ‘while this derivation 
is the shortest available, it is somewhat remote from the definitions of the coefficients’. 

Here, we relate the 3-j coefficient to the van der Waerden form of the 3F2( l )  
functions, transform it to the Majumdar form of 3F2( l )  using a Weber-Erdelyi transfor- 
mation and then relate the 3-j coefficient to the discrete orthogonal Hahn polynomial. 
Karlin and McGregor (1961), in their classic paper entitled 77he Hahn Polynomials, 
Formulas and an Application, have provided a complete list of recurrence relations 
satisfied by the orthogonal Hahn and dual Hahn polynomial. Of the four recurrence 
relations proved by Karlin and McGregor three are noted by them to be new. Having 
established that the discrete orthogonal Hahn polynomial is related to the 3-j coefficient, 
we study the consequences of the aforesaid recurrence relations on the 3-j coefficients 
themselves. We are thus led to a simple and straightforward derivation of four 
recurrence relations, which include the two derived from sum rules by Schulten and 
Gordon (1975). Since one of these recurrence relations is a linear combination of two 
others, it follows that three of the four recurrence relations are independent. Of these 
three, two recurrence relations satisfied by the 3-j coefficient are new. 

2. Four sets of J2(1) functions 

Several methods used for calculating the 3-j coefficients have been summarised by 
Biedenharn and Louck (1981). The 3 - j  coefficient is defined as 

- I  3 
X C ( - l ) ‘  t !  fi ( 2 - q ) !  n (W!) 

I ( k = l  / = I  

where 

max(a l ,  4 2 min(Pl,  P 2 ,  P , )  

P I  = j l  - m 1  ,G2 = j 2  + m2 P3 = j l  + j ,  - j 3  

a1 = j l  - ml - ( A +  m) a? = j 2 +  m 2 - ( j ,  - m3)  

and 

A ( x ~ z )  = [( - X  + y + z ) !  ( X  - y + z ) !  ( X  + y - z ) ! / ( x  + y + z + l)!]”*. 

This form is the most symmetric form attributed to van der Waerden (1932) and it has 
also been arrived at by Racah (1942). 

One of us (Srinivasa Rao 1978a) has shown that there exist a set of six series 
representations, and correspondingly a set of six 3F2( 1 )  functions, necessary and 
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sufficient to account for the well known 72 symmetries of the 3-j coefficient. This set 
of six 3F2( 1 )  functions will be referred to as the van der Waerden set and explicitly it 
is 

x [ r ( l  -A,  1 - B, 1 - C, D, E ) ] - I 3 F 2 ( A ,  B, C ;  D, E ;  1 )  

where 

A=-R2,, B = -R3q C=-R1, 

D =  R,, - RZp + 1 E = R2,- R3, + 1 

r(x, y , .  . .) = r (x ) r (y )  . . . J = j ,  +j2+j3  

and 

for even permutations, 
for odd permutations 

a ( p q r )  = { R 3 p  - R2q 

R 3 p  - R2q  + 
for all permutations of ( p q r )  = (123). The Rik are the elements of the 3 x 3 square 
array given by Regge (1958): 

whose row and column sums add up to J = j ,  + j2+j3  and which exhibits, due to its 
invariance under column permutations, row permutations and transposition,, the 72 
symmetries of the 3-j coefficient. 

We now make use of a transformation formula for a terminating 3F2(l). This 
formula is one of a group (cf Bailey 1935) and its proof, given by Weber and Erdelyi 
(1952), runs along the following lines. The formula 

can be verified by expanding both sides in power series. We use the well known identity: 

and substitute it in (4). Replacing the variable t by 1 - t and using ( 4 )  again to replace 
the integral with a 3F2( 1 )  we get the transformation formula: 

where n is an integer which determines the number of terms in the 3F2(l). We refer 
to (6) as the Erdelyi-Weber ( EW) transformation formula. 

Identifying the numerator and denominator parameters of the van der Waerden 
set of 3F2(1)  functions given in (2) as 

a = A  P = B  n=-C y = D  6 = E  (7) 
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and applying the EW transformation (6), we will get for the 3-j coefficient (in the 
notation adopted for (2)): 

x r ( 1 -  D’){T(l - A ‘ ,  1 + B‘-E’, 1 - C’, E’, 1 + A ’ -  D’, 1 + C’-D’)}-’ 

x 3F,(A’, B’, C‘; D’, E ’ ;  1) (8) 
where 

B’=1+R2,  C ’ = - R 1 ,  2 P  
A ’=  - R  

D’= - R l r  - R3r E‘= R2r-  R3,+ 1. (9) 
This set of 3F2( 1) functions will be called the Wigner set of 3F2( l ) ,  since in (9), setting 
(pqr) = (132) results in the Wigner form of the 3-j coefficient given by equation (28) 
in Raynal (1978). 

Alternatively, if we identify the parameters in (2) as 

a = A  p = C  n = - B  y = D  6 = E  (10) 
and using the EW transformation (6), we will get for the 3-j coefficient the form (8), 
but the numerator and denominator parameters of the 3F2(1) will now be 

3 P  
B’=1+R3,  C’=  - R  

2 P  
A ‘=  - R  

D ’ = - R  3 p  - R  3 r  E ’ = 1 + R 2 , - R 3 q .  (11) 
This set will be called the Racah set of 3F2(l) functions, since in ( l l ) ,  identifying 
(pqr) = (132), the Racah form of the 3-j coefficient, viz equation (29) in Raynal (1978), 
can be obtained. Biedenharn and Louck (1981) in their treatise point out that Racah’s 
form may be obtained from Wigner’s form by using the two gransformations that arise 
due to interchanging the second and third rows of (3) followed by the interchange of 
the first and second rows of (3). 

Finally, a third identification for the parameters in (2) as 

cY=c P = A  n = - B  y = D  6 = E  (12) 
and the use of (6) will yield for the 3-j coefficient the form of (8) but with the numerator 
and denominator parameters being 

3 q  
B ’ =  1 + R I ,  C’=  - R  I r  A ’ =  - R  

D’ = - RZq - R3q E ’ = 1 + R 2 r - R 3 q .  (13) 
This set of 3F2(1) functions will be called the Majumdar set, since for (pqr) = (321) 
the Majumdar form of the 3-j coefficient given by equation (30) in Raynal (1978) is 
obtained. 

Thus it is found that, starting with the highly symmetric van der Waerden set of 
3F2( l ) ,  three sets of 3F2( 1 )  corresponding to Wigner, Racah and Majumdar forms can 
be obtained by simply using the Erdelyi-Weber transformation in three different ways. 
Conversely, the same EW transformation can be used to get the van der Waerden set 
from the Wigner, Racah or Majumdar sets, by virtue of the fact that the matrix relating 
the numerator and denominator parameters in (6) acts like a projection operator. 

Corresponding to the three identifications made above-viz (7), (10 )  and (12)-we 
can make three more identifications with 

y = E  6 = D  (14) 
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when we again get the three sets but in a different order, viz Majumdar, Racah and 
Wigner forms of ,F2(1) given by (13), (11) and (9), respectively, on which are super- 
posed (i)  the interchange of the p ,  q indices and (ii)  the m, + -m, substitution. 

While we have obtained here four sets of 3 F z (  1) for the 3-j  coefficient, one member 
of the Wigner, Racah, van der Waerden and Majumdar 3F2( 1) forms has been referred 
to by Smorodinskii and Shelepin (1972). Also, starting with a given ,F2( 1) belonging 
to the van der Waerden set and resorting to the work of Whipple (1925) on the 
symmetries of the &(1) functions, Raynal (1978) has shown that the ,Fz ( l )  forms 
due to Wigner, Racah and Majumdar can be obtained. 

The following is to be noted. In the case of the van der Waerden set of six ,FZ(l), 
all the 3 ! numerator parameter permutations and the 2! denominator parameter permu- 
tations are allowed, as is manifestly evident from (2). For each member of the set, 
these permutations account for 12 symmetries, and hence for the whole set all 72 
symmetries of the 3- j  coefficient will be accounted for. But, in the case of the Wigner, 
Racah and Majumdar sets of six 3Fz(l), each member of the 3Fz(l) set accounts for 
only two symmetries (and not all 12 as one would expect). This is due to the nature 
of the numerator and denominator parameters. In the case of the van der Waerden 
set all three numerator parameters are negative integer parameters and the two 
denominator parameters are positive integers. But in the case of the Wigner, Racah 
and Majumdar sets, two of the three numerator parameters (A’  and C’) are negative 
integers while the third ( B ‘ )  is a positive integer and of the two denominator parameters 
one ( D ‘ )  is always a negative integer and the other ( E ’ )  is always a positive integer. 
Amongst the numerator/denominator parameters, permutation of negative (or positive) 
integer parameters will yield meaningful and known symmetries of the 3-j  coefficient. 
But permutation of a negative parameter with a positive parameter (in the 
numerator/denominator) will yield symmetries for the 3-j  coefficient which violate the 
triangular inequalities as in the case of the 6- j  coefficient obtained by Minton (1970). 
To illustrate, in the Wigner 3F2( 1) set, given by (8) and (9) for ( p q r )  = (132), interchang- 
ing B’ and C‘ will result in the 3-j coefficient being related to 

) (15) 
( ( j ,  - j3+ m 2 -  1)/2 J z  ( - j l  + j 3 +  m 2 -  

m, + ( - j ,  - j 3  + m2 - 1)/2 j ,  + j ,  + 1 m3 + ( - j ,  - j ,  + m, - 1)/2 
which, though a Regge-like symmetry in appearance, violates the triangular inequality 
(for the 3-j coefficient on the right-hand side of (15)). Thus, the only allowed symmetries 
in the Wigner, Racah and Majumdar sets of ,Fz( l )  are those due to the interchange 
of A’ and C‘, as is manifestly evident from the form of (8). The asymmetric nature 
of these forms has been realised by Racah (1942) himself as reflected in his statement 
that his formula ‘is similar to Wigner’s formula and is, also, unsymmetrical and 
unpractical for the use’. Racah (1942) transformed his formula into the highly sym- 
metrical van der Waerden form. One of us (Srinivasa Rao 1978b, 1981) has shown 
how the van der Waerden set of ,FZ(l)  is most useful in numerical computation of 
the 3-j  coefficient. 

3. The Hahn polynomial: definition and properties 

The Hahn polynomials defined by Karlin and McGregor (1961) are 

Q n ( x )  = Qn(x; a, P, N )  
= , F , ( - n , - x , n + a + p + l ;  a + l , - N + l ;  1) 
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for real a > - 1 ,  P > -1  and positive integral N. The results of Karlin and McGregor, 
which are made use of here, are obtained with this restriction of a, P to real values > -1 .  

This discrete polynomial has been shown (Karlin and McGregor 1961) to satisfy 
the following orthogonality relations: 

and 

N - l  1 

where S,, is the Kronecker delta function and the weight functions are 

and 

N - 1  N + a + P + n  - ‘ ( 2 n + a + p + 1 )  =(T)( n 1 ( f f + P + 1 )  

r (p t -1 ,  n + a + l ,  n + a + P + l )  
T ( a + l ,  a + p +  1 ,  n + P +  1 ,  n + l )  

X 

with ( y )  representing the usual binomial coefficients. Karlin and McGregor call ( 1 8 )  
their new dual orthogonality relation. 

To relate the 3-j coefficient given by ( p q r )  = (123) in ( 2 )  to the Hahn polynomial, 
we make use of the transformation ( 6 )  for the ,F2 ( l )  given by Erdelyi and Weber. 
Identifying 

a = C  P = A  n = - B  y = D  S = E  (21)  

after simplification, we get 

1 x ( ( 2 ( j 3  - j 2 )  + n ) !  ( j ,  - j2+ m ,  + n ) !  ( j ,  - j2+ m,  + x ) !  ( j3+j2  - m1 - x ) !  
( j 2 -  n ) !  n ! (2 j3+ n + I ) !  x ! ( 2j, - x ) ! ( j ,  - j ,  - m + n ) ! 

m 1  x - j 2  j 2 - m l - x  
x ( j 3 - j 2 + n  j ,  

where we set 

n = j , + j 2 - j ,  

a = j ,  - j 2  + m, 

x = j ,  + m, N = 2j, + 1 

P = -j2 + j ,  - m, . 
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Though a = ( j 3  - m,) - ( j 2  + m 2 )  and p = ( j ,  + m,)  - ( j ,  - m 2 ) ,  being differences between 
integer quantities, appear to be capable of taking positive or negative values, due to 
the 72 symmetries of the 3-j  coefficient, it is always possible to choose a symmetry of 
the given 3-j coefficient for which both a and p are 30. This restriction to non-negative 
real values of a and p is required since we use the orthogonality properties for the 
Hahn and dual Hahn polynomials of Karlin and McGregor (1961). 

4. Recurrence relations 

The first of the recurrence relations satisfied by the Hahn polynomial due to Weber 
and Erdelyi (1952) is 

[b,+d, -XIQfl(X) = bnQfl+l(X)+dnQfl-l(X) (23) 

where 

( 2 4  
( n  + a + p  + l ) ( n  + a  + 1 ) ( N -  n - 1) 

( 2 n S a  + p  + 1)(2n + a  + p  +2) 
b, = 

n ( n  + @ ) ( n  + a  + p  + N) 
(2n+ a +P)(2n + a  + p  + 1) 

dfl = 

which is valid for complex values of x if n = 0, 1, 2, . . . , N -2 but is valid only for 
x = 0, 1,2, . . . , N - 1 when n = N -  1. Using (22), (24), and (25) in (23) after simplify- 
ing and rearranging we get the following recurrence relation for the 3-j coefficient: 

+ j , A (  j ,  + 1, j 2  , j 3 ) ( j ’  j 2  j 3  ) = 0 
m1 m2 m3 

where 

A ( j p ,  j , ,  j , )  = [ j i - ( j , - j , ) 2 ] 1 ’ 2 [ - j i + ( j q + j r +  l ) 2 ] ” 2 [ j i - m i ] ” 2  (27) 

(28) ( j ,  , j ,  , j ,  1 = ( 2 j p  + 1 1 { j ,  ( j ,  + 1 1 ( mr - mq ) - [ j ,  ( j ,  + 1 ) - j r  ( j r  + 1 ) 1 mp 1 
with p # q # r being 1, 2 or 3. These expressions, with minor notational modifications, 
correspond to (6a), (6b) and (6c) of Schulten and Gordon (1975), respectively. 

The orthogonality relation (18) for the discrete Hahn polynomial can be shown to 
imply the following normalisation condition for the 3 -j coefficient: 

Schulten and Gordon (1975) have provided a numerical algorithm for the computation 
of the 3-j  coefficient based on recursion equations relating coefficients in two different 
types of strings. They derived the recursion relations algebraically from certain sum 
rules satisfied by these coefficients. The orthogonality relation (29), along with the 
recurrence relation (26), has been shown by them to be adequate to determine (except 
for an overall phase factor) the values of the string of 3-j coefficients ( ii k2 i3 ) for all 
allowed values of j ,  . 
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The second difference equation derived by Karlin and McGregor for the Hahn 
polynomial is 

E B ( x )  + D ( x )  - A, 1 Qn ( X I  = B ( x )  Qn ( X  + 1) + D(x) Qn ( X  - 1 1 (30) 

where 

B ( x )  = ( N  - 1 - x ) ( a  + 1 + x )  

D ( x )  = x (  N + p - x )  

A ,  = n ( n  + a + p  + 1) 

and (30) is valid for n = 0, 1, . , . , N - 1, for all complex values of x. This recurrence 
relation implies for the 3 4  coefficient: 

where 

with p # q # r being 1, 2 or 3. These expressions correspond to the appropriately 
modified forms of ( s a ) ,  (96) and (9c) of Schulten and Gordon (1975). The orthogonal- 
ity relation (17 )  can be shown to imply the normalisation condition: 

which, along with the recurrence relation (31), has been shown by Schulten and Gordon 
to determine (except for an overall phase factor) the values of the string of 3-j 
coefficients (2 ,  :2 -m:-m,) for all allowed values of m,. 

Thus, the recurrence relation in J ,  and the recurrence relation in m2 and m3 are 
found to be direct consequences of the corresponding recurrence relations satisfied by 
the discrete orthogonal Hahn polynomials. The derivations of (26) and (31) given 
here are a direct consequence of the definition of the 3-j coefficient in terms of Q,,(x) 
given in ( 2 2 ) ,  as opposed to the algebraic method resorted to by Schulten and Gordon 
of deriving them from certain other sum rules. 

Karlin and McGregor (1961) have given two new first-order difference-recurrence 
relations satisfied by the Hahn polynomial. These are 

{ ( n  + a  + p  + l ) [ (n + p  + l ) ( x -  n )  - ( n  + a  + 1 ) ( N  - 1 - x ) ]  

+ ( 2 n  + a + p + 2 ) (  a + 1 + x ) (  N - 1 - x)}Qn ( x )  

- (2n  + a  + p  + 2 ) ( a  + 1 + x ) ( N  - 1 - x )Qn(x+ 1) 

+ ( n +  a + p  + l ) ( n  + a + 1 ) ( N -  1 - n ) Q , + , ( x )  = O  (35) 
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and 

{ n[ ( n  + p )( N - 1 - x)  - ( n  + a ) (  n + a + p + x + 1 )] 

+ (2n + a  + @ ) ( a  + 1 + x)( N - 1 - X)}Q.(X) 

-(2n + a + P ) ( a  + 1 + x ) ( N -  1 - x ) Q n ( x +  1) 

- n ( n  + P ) ( n  + a  + p  + N ) Q n w 1 ( X )  = 0. (36) 

While (23) is a three-term recurrence relation in n for Q n ( x )  and (30) is a three-term 
recurrence relation in x for Q n ( x ) ,  it is to be noted that (35) and (36) are recurrence 
relations mixed in n and x. However, since a term involving Q n ( x  + 1) is common in 
both (35) and (36), one can try to algebraically eliminate it. This results in (23)-a 
three-term recurrence relation in n. Therefore, we consider (35) and (36) along with 
(30) to be the fundamental recurrence relations satisfied by Q n ( x ) .  

A straightforward use of (22) in (35) and (36), after simplification and rearrange- 
ment, leads to the following recurrence relations for the 3-j coefficient: 

F ( j 1 , j 2 , j 3 ) ( j 1  j2 j 3 ) + 2 ( j l + l ) C ( m 3 , m , ) (  J2 
m, m2 m3 m, m 2 + l  m3-1 

- A ( j, + 1, j, , j ,  ) ('I + 
j2 j3 ) = 0 

MI m2 m3 

and 

(37) 

where 

W p , j q , j r ) =  ~ j p - ~ q + ~ r + ~ ~ ~ ~ ~ p + ~ ~ ~ ~ p + ~ q - ~ ~ - ~ ~ q ) + ~ ~ ~ - ~ p + ~ q + ~ r ~ l  (39) 

E( jp , jq , j r )  = ~ - ~ p - ~ q + ~ r ~ ~ ~ ~ ~ ~ p - ~ q + ~ r + ~ ~ ~ + ~ ~ + ~ p ~ ~ p + ~ q + ~ ~ + ~ ~ l .  (40) 

and 

Multiplying (37) byj ,  and (38) by (j, + 1) and subtracting, we would get the three-term 
recurrence relation in j, for the 3-j coefficient, with the constant factors obeying the 
condition 

( j ,  + l )E( j l  , j 2 , j d  -hWI ,j2,j3) = Wl, j2 , J3 ) .  (41) 

To conclude, we have shown in 0 2 that, just as a set of six $,(l) exist for the van 
der Waerden case, there exist sets of six 3F2( 1) for the Wigner, Racah and Majumdar 
forms. We have also established an interrelationship between these sets of 3 F 2 (  1) with 
the help of the Erdelyi-Weber transformation (6). 

In 0 4, we have shown that, as a direct consequence of identifying the 3-j coefficient 
with a discrete orthogonal Hahn polynomial, we can derive three fundamental recur- 
rence relations for the 3-j  coefficient and two of these are new. Smorodinskii and 
Suslov (1982) made a different identification (see the appendix) but that has also been 
found to lead to the same three recurrence relations-(31), (37) and (38)-for the 3-j 
coefficient. 
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Appendix 

The transformation (6) given by Erdelyi and Weber can, in fact, be derived from tables 
IIA and IIB in Bailey (1935) which summarise and group the equivalent numerator 
and denominator parameters of the 3F2( 1) functions obtained by Thomae in the notation 
introduced by Whipple (1925). Explicitly, in this notation, (6 )  corresponds to 

Using (6) again, with the roles of y and S interchanged, to transform the right-hand 
side of (6), Erdelyi and Weber obtained the transformation: 

r ( y ,  8, S + n -a, y +  n -a) 
T ( y +  n, S + n, S -a, y - a) 

-n, a, 1 + a  + p  - y -  S - n; 1 
1 + a  - 6 - n, 1 + a  - y -  n 

- - 

If we identify 

CY=A P = B  n = - C  y = D  S = E  (A3) 

where A, B, C; D, E are the numerator and denominator parameters of the van der 
Waerden form of 3F2( 1) given by (pqr) = (123) in (2), and follow the procedure outlined 
in the text, then we would get 

x [x !  (2j, - X I !  ( j ,  +j2+ m3 -XI! (-ji +j2 - m3 + x)! (j, +j2+ m3 - n )  

j 2  

j , - x  - j l - m 3 + x  m3 

for the discrete Hahn polynomial (16), with: 

n = j l + j 2 - j 3  x =ji - m ,  N = 2j, + 1 

a = -j, -j2 - m3 - 1 
(A5) 

This form (A4) happens to be an equivalent way of relating the Hahn polynomial to 
the 3-j coefficient and is similar to that given by Smorodinskii and Suslov (1982), who 
also made use of (A2). 

P = -j, -j2+ m 3 -  1. 
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In passing, we wish to mention that the identification (21) made in the text transforms 
the van der Waerden 3F2(  1 )  form for the 3-j  coefficient, via the Erdelyi-Weber transfor- 
mation ( 6 ) ,  to the Majumdar form (13).  If, instead of (21), we make the identifications 
(7) and ( lo) ,  then we would have obtained, after the Erdelyi-Weber transformation 
( 6 ) ,  the 3F2(l)  forms (9) or ( l l ) ,  which are the Wigner and Racah 3F2(1) forms for 
the 3-j coefficient as detailed in 0 2. However, these two identifications do not lead 
to the desired ranges for the indices x and n to satisfy the known sum rules for the 
3-j coefficient given in (29) and (34). 
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